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Spatial scale

Linking reactions to sediment phosphorus
- Microscale processes
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Transfer of electrons
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Pathways of organic matter oxidation

i.e. transfer of electrons

. Depth in sediment
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Anaerobic | ly O, consumption
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—0, is the } | released during mineralization

— In long run oxygen productlon oxygen consumption (1:1)

Not true in geological timescales: Long term burial of
organic carbon and formation of FeS, (iron oxidizes
sulphur) we have free O, in athmosphere



Biogeochemical cycles
(closed system)
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Terrestrial and aquatic systems
Differences in reservoirs and exchange pools

I = R S

Nutrient pools

a) Reactive sites Minerals, org. horizons, rhizosphere Particles, sedim.-water
b) Sites of nutrient storage Soils, vegetation Sediment, fish

Biota

a) Lifespan of primary producers Long Short

b) C:N, C:P of primary producers High Low

c) N-fixers Symbiotic with long-lived organisms Free living

d) Ratio consumers:producers Lower Higher

Prevalence of anoxia Rare, microsites only Sediments, hypolimnion



P-pools in marine and terrestrial
living organisms

* P-pool (50 to 70 x 10*? g) in marine plankton is only 2 %
of that in terrestrial living biomass

 However, the marine primary production incorporates
1200 x 10?2 g P yrt

— is 3 to 4 times higher than the terrestrial incorporation rate



Turnover times (‘residence’)

* The turnover time of living oceanic biomass is
short:

— few days for prokaryotes R
— week for phytoplankton
— few months for zooplankton C@//

* |n terrestrial systems the P is malnly bound to
long-lived forests

— average turnover time for terrestrial living
biomass is at least 10 years



What does this mean?

* Phosphorus cycles much faster in aquatic
than terrestrial systems

* With a same amount of phosphorus we get
more organic carbon (i.e. electron

packages) into aquatic than terrestrial
system




Primary production Mineralization
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Energy flow

goes through the system (open system)

Proportion of background phosphorus
Anthropogenic loading from Finland to the Baltic Sea is 30%
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Eutrophication increases
amount of organic matter

- Human actions have a large
and growing importance on mineralization
processes (redox-reactions) in aguatic systems
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Pathways of organic matter oxidation

Reduction rea
Respiration process
oxic Aerobic respir oeoration.
) - ) Mitrate reduction
anoxic Denitrificatiorfi
Manganese reduction
anoxic Manganese ref o reduction
anoxic Iron reduction
Sulfate reduction
anoxic Sulfate reduct
anoxic Methanogenes Methanogenesis
Canfield and Thamdrup 2009, Geobiology 7: 385-392

One element is missing Phosphorus

Chemical zone

Depth in sediment ‘

Oxic
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Phosphorus: What kind of sediment
we would like to have considering
mineralization pathways?

If you have an extra electron (organic matter) where
do you put it (which electron acceptor you prefer)
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Pathways of organic matter oxidation

Reduction reaction Formula

Depth in sediment

anoxic Iron reduction CH,0 + 4FeO0H + 8H" — CO, + 4Fe* + 7TH,0 cm

anoxic Sulfate reduction 2CH,0 +SO,% + 2H" — 2C0, + H,S + 2H,0 m

| -‘X | T..

_ Des_ulfouibrio

vulgaris

Fe(lll) is sensitive towards mineralization processes
‘ Phosphorus starts react on redox-reactions
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Significance of sulphate
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Sulphate removed i.e. change in
electron acceptor

¥ 400 1

i #
{
i
By Bt
¥

S0,% (mg LY
w
8

0%‘ : o——o

0 10 20 30 40 50 60

50

ores open cores closed

40 1| —O— Low sulphate
—&— High sulphate

30 1

20 A

Fe(ll) (mg L)

10 A

0 10—8-0-0- : . : .
I 0 10 20 30 40 50 60
' 8000 |cores open

6000 H

~_ 4000 A

DP (ug L)

2000 1

0 - - - - - -
0 10 20 30 40 50 60
Day

Ekholm et al. 2011. The effect of gypsum
on phosphorus losses at the catchment scale.
THE FINNISH ENVIRONMENT 33 | 2011



Addition of organic carbon
(i.e. change in electron donor)

How microbial iron and sulphate reduction
can be noticed after organic matter addition?
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Up-stream thinking: Soil erosion and
anerobic microbial processes in brackish

sediment Incubation:
 Atdark

80 ml filtered e (a)+10°C, (b) +8 °C
Standard field soil Gulf of Finland water « (a)3084d, (b) 745 d

Sandy clay
(60—1000 mg)

154
B

Natrium acetate
(_%0.375-24 mg C)

~ Pasi Valkama

Sepe Lehtoranta, J., Ekholm, P.,
2 Wahlstrom, S. Tallberg, P. and Uusitalo, R.

.~~~ =l Under revision
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Black
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fi™ Fe sulphides
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Consequences of eutrophication
linked to electron transfer in
sediments
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Eutrophication associated hypoxic areas
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Sh' e

!-I processes in the Baltic Sea?
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Could change In microscale processes driven by

mIicro-organisms cause macroscale consequences?
Lehtoranta, Ekholm and Pitkdanen 2009 Ambio 38: 303-308
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Summary

Eutrophication increases mineralization
All terminal electron acceptors used produce CO,

Reduced substances formed in the mineralization
narticipate to further redox-reactions (Mn(ll),
Fe(l1), H,S, CH,)

They have different consequences on the
element cycles in the system

So "if you have an extra electron where do you
put it”, depends what you are trying to get




Thank you
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